1
表观遗传学定义
当Waddington提出这一词语时,人们对基因的物理性质及其在遗传中的作用还不清楚,使用该词语是表示,基因可能与环境相互作用,并产生表现型的概念。年,RobinHolliday将表观遗传学定义为“在复杂有机体的发育过程中,对基因活性在时间和空间中调控机制的研究”。6年后,ArthurRiggs及其同事将其定义为,有关引起可遗传的基因功能改变的有丝分裂和/减数分裂的研究,这些变化以DNA序列改变无法解释。年时,AdrianBird又将表观遗传学定义为,染色体的构造适应,以便启始、发出信号或保持变构的活性状态。直到年的冷泉港会议,才达成表观遗传学的共识,即“由染色体改变所引起的稳定的可遗传的表现型,而非DNA序列的改变。
2
表观遗传学分子基础
表观遗传的改变可以导致特定基因的激活,而不必改变DNA序列。此外,染色质蛋白与DNA相关联可能被激活或沉默。这是不同的细胞在多细胞有机体中只表达其活动必需基因的原因。当细胞进行分裂时,表观遗传的变化得以保存。
大多数表观遗传变化只发生在生物个体的一生中,但是,如果形成受精卵的精子或卵细胞发生了基因失活,那么这种表观遗传变化将被传递给下一代。由此拉马克学说提出了一个问题:这种生物体表观遗传的变化是否可改变DNA的基本结构?特殊的表观遗传过程包括副突变、书签、印迹、基因沉默、X染色体失活、位置效应、重组、缩并、母体效应、致癌进程、致畸剂影响、组蛋白化学修饰的调控以及异染色体和受技术局限的单性繁殖及克隆,另外DNA损伤也会导致表观遗传变化。
3
DNA甲基化和染色质重组
细胞核个体的表现型受到自身基因转录的影响,因此可遗传的转录能提高表观遗传效应。基因表达分多层调控,基因调控的一种途径是通过染色质重组。染色质是DNA和组蛋白结合的复合体,DNA缠绕着组蛋白球体,若DNA缠绕组蛋白的方式发生改变,基因表达也将改变。染色质重组通过以下两个主要机制完成:
第一条途径是组成组蛋白的氨基酸的平移修改。组蛋白由长链氨基酸构成,如果链中的氨基酸改变,组蛋白的形态将发生改变。复制期间的DNA并非完全解链,因此,经过修改的组蛋白可能被用于每个新复制的DNA,这些组蛋白将作为模板,以新的方式合成新形态的组蛋白。通过改变周围蛋白的形态,这些修改的组蛋白将确保分化的细胞保持分化状态,而不是重新回到干细胞状态。
第二条途径是通过增加位于CpG岛上的DNA甲基化,使胞嘧啶转化为5-甲基。5-甲基胞嘧啶同正常的胞嘧啶一样与鸟嘌呤配对,然而,基因组某些区域的甲基化较多,甲基化较高的区域通过不完全清楚的机制使得转录的活力减小。甲基化的胞核嘧啶也可以从父母一方的生殖细胞保留在受精卵中,标记染色体遗传自双亲。
4
RNA转录及其编码蛋白
有时,一个基因被发动后转录成保持该基因活性的产物(直接或间接)。RNA信号传输包括有区别的募集同层次的一般染色质修饰复合体和在分化及发展中通过RNAs使DNA转甲基酶到特定的位点。其他表观遗传变异由RNA不同粘接形式的产物或双链RNA(RNAi)的形成来介导。即使基因活化的原始刺激已经不存在,基因被发动的细胞的后代也将继承这种活性。这些基因对一些系统合胞体或缝隙连接很重要,常常被信号转导打开或关闭,RNA可以通过扩散直接传播到其他细胞或细胞核中。大量RNA和蛋白通过母亲卵子形成过程或通过足细胞促成受精卵,导致母体效应的表型。少量精子RNA来自于父亲,但最近证明该表观遗传信息能导致几代后代的明显改变。
微小RNAs微小RNAs(miRNAs)是非编码RNAs的成员,大小范围从17到25个核苷酸。大约60%的人类蛋白编码基因由微小RNAs调节,很多微小RNAs由表观遗传调控。约50%的微小RNA基因与CpG岛有关,其可能被表观遗传甲基化抑制。来自甲基化的CpG岛的转录被强烈抑制并可遗传。其他微小RNAs通过组蛋白修饰或通过DNA甲基化和组蛋白修饰组合来进行表观遗传调节。
小RNAs小RNAs是在细菌中发现的小的(50-的核苷酸),高度结构化的,非编码的RNA片段。小RNAs控制基因表达,包括病原体毒力基因,并被认为是与细菌耐药性作斗争的新靶点。
朊病毒朊病毒是蛋白质有传染性的部分。通常,蛋白质折叠成执行不同细胞功能的不相关的单元,但有些蛋白质也能形成有传染性的构象状态,如已知的感染性蛋白质。虽然曾经认为朊病毒具备将相同蛋白质的其他原生状态催化转变为一种有传染性构象状态的能力,但在以后的研究中,又认为其是表观遗传的代理,具有不修饰基因组而引起表型改变的能力。
5
结构遗传系统
在基因完全相同的纤毛虫中,例如四膜虫属和草履虫属,其遗传差异显示在细胞表面纤毛纹的方式上。这种改变可以传给子细胞,似乎存在一种结构起到模板的作用这种遗传的机制还不清楚,但多细胞有机体也可利用现存的细胞结构来组装一个新的有机体的假设是有理由存在的。
6
表观遗传学应用方向
医学表观遗传有各种各样的潜在的医学上的应用,同时它在世界上也趋向多面性。先天性遗传性疾病很好理解,表观遗传能够发挥作用也很清楚,例如,Angelman综合征和普拉德-威利综合征。由基因缺失或基因失活导致的遗传疾病并不多见,这是由于基因组印记本质上是半合子,因此单个基因敲除足够致病,但多数病例需要两个拷贝都被敲除。
进化当表观遗传改变可遗传时,表观遗传可影响进化。一个隔离的种系或魏斯曼屏障对于动物是特异的,表观遗传在植物和微生物中更为普遍。表观遗传有两个重要方式,可与传统遗传相区别,对于进化有重要的作用,这就是表突变率比一般突变率快得多及表突变更容易逆转。
环境表观遗传改变已被观察到在对环境暴露产生反应时发生,例如,给予膳食补充剂的小鼠具有影响基因表达的表观遗传改变,影响其毛色,体重和患癌症的倾向。就人类在不同环境暴露下来说,Fraga等研究年轻的和年老的单卵双胞胎。发现尽管这些双胞胎在早年很难从表观遗传上区分,但老年双胞胎在5-甲基胞嘧啶DNA和组蛋白乙酰化的整体含量及基因组分布上具有显著差异。共度时间较短的双胞胎和/医疗史差异较大的双胞胎在5甲基胞嘧啶DNA和组蛋白H3及H4乙酰化水平差异也更大。
人类的表观遗传效应基因组印迹和相关疾病一些人类疾病与基因组印记有关,在哺乳动物中有一种现象,即父亲和母亲在其生殖细胞中对特定的染色体组位点贡献不同的表观遗传模式。在人类疾病中众所周知的印记案例是Angelman综合征和普拉德-威利综合征——两者可由相同的基因突变产生,染色体15q部分缺失,这个特别的综合征将依赖于突变是继承于母亲还是父亲而发展,原因是在这个区域里存在基因组印记。Beckwith-Wiedemann综合征也与基因组印记有关,经常由母体基因组印记的染色体11上的一个区域异常导致。
表观遗传与发育异常很多致畸剂通过表观遗传机制对胎儿发挥特定作用。表观遗传效应可以保持致畸剂的作用,如己烯雌酚可以影响儿童的整个生命周期,但由父亲暴露引起后代出生缺陷的可能性因为缺乏理论基础而不能成立。然而,一系列由男性介导的异常已被证实,如阿扎胞苷,FDA规定,当使用5-阿扎胞苷(当其整合进入DNA后形成低甲基化胞苷成为不可甲基化类似物的物质)时,“男性应注意避孕”。证据是:5-阿扎胞苷处理过的雄性小鼠繁殖力下降,增加了胚胎丢失和异常胚胎发育的机会。除了形成受精卵的卵子和精子的基因发生表观遗传变化会传递给下一代外,正在发育的胎儿在宫内也会因为母亲暴露于某些因素而发生表观遗传变化。很多流行病学调查显示,胎儿在宫内的生长发育状况与某些成人疾病的发生存在一定的关系。如Barker著名的“成人疾病胎儿起源”假说。该假说认为,胎儿在孕中晚期营养不良,会引起生长发育失调,且成年后易患冠心病。与低出生体重相关的疾病还包括动脉粥样硬化、冠心病、2型糖尿病等。
癌症
基因
后生变化
频率
乳房
BRCA1
CpG岛甲基化
13%
WRN
CpG岛甲基化
17%
卵巢
WRN
CpG岛甲基化
36%
BRCA1
CpG岛甲基化
5%-30%
FANCF
CpG岛甲基化
21%
RAD51C
CpG岛甲基化
3%
结肠直肠
MGMT
CpG岛甲基化
40%-90%
WRN
CpG岛甲基化
38%
MLH1
CpG岛甲基化
2%-65%
MSH2
CpG岛甲基化
13%
ERCC1
表观遗传类型未知
%
Xpf
表观遗传类型未知
55%
头颈部
MGMT
CpG岛甲基化
35%-57%
MLH1
CpG岛甲基化
27%-33%
NEIL1
CpG岛甲基化
62%
FANCB
CpG岛甲基化
46%
MSH4
CpG岛甲基化
46%
ATM
CpG岛甲基化
25%
癌症治疗最近的研究已显示,表观遗传药物可替代当前公认的治疗方法,如放射治疗和化学治疗,或作为辅助治疗提高当前疗法的效果。原癌基因区的表观遗传控制和肿瘤抑制序列可通过组蛋白构象变化而直接影响癌症的形成和进展。此外,表观遗传具有可逆性,是其他任何一种癌症治疗法所不能提供的特性。
药物发展主要聚焦于组蛋白乙酰转移酶(HAT)和组蛋白脱乙酰基酶(HDAC),已经上市的新药vorinostat,是一种HDAC抑制剂,其在口腔鳞状细胞癌的进展中发挥整体作用。对当前领跑的新药靶点候选者还有组蛋白赖氨酸甲基转移酶(KMT)和蛋白质精氨酸甲基转移酶(PRMT)。
微生物中的表观遗传细菌广泛利用DNA甲基化的表观遗传,控制DNA-蛋白的相互作用。细菌利用DNA腺嘌呤甲基化(不是DNA胞核嘧啶甲基化)作为一种表观遗传信号。DNA腺嘌呤甲基化对于细菌在有机体内的毒力很重要,如大肠杆菌,沙门氏菌属,弧菌属,耶尔森氏菌属,嗜血杆菌属和布氏杆菌属。对于甲型变形菌,腺嘌呤甲基化可调节从细胞周期和配对基因转录到DNA复制。对于丙型变形菌,腺嘌呤甲基化为DNA复制,染色体分离,错配修复,噬菌体包装,转座酶活性和基因表达控制提供了信号。
丝状真菌粗糙链孢霉有助于理解胞核嘧啶甲基化在一个突触的模型系统中的控制和功能。在这个有机体内,DNA甲基化抑制转录延伸,与RIP(重复诱导点突变)的基因组防御系统的残余物和沉默基因表达有关。
酵母菌感染性蛋白(PSI)由一种翻译终止因子的某一构象改变而产生,其子细胞可继承这种改变,并在不利条件下提供一种生存优势。这是表观遗传调节使单细胞有机体能够快速对环境应激产生反应的一个范例。
素材来源于曹款科学网博客,锐博生物
(声明:“细胞之邦”白癜风有治愈的吗怎么样才能治疗白癜风
当前时间: