酶(英文:Enzyme,源于希腊语:ενζυμον,“在酵里面”),指具有生物催化功能的高分子物质,在酶的催化反应体系中,反应物分子被称为底物,底物通过酶的催化转化为另一种分子。几乎所有的细胞活动进程都需要酶的参与,以提高效率。与其他非生物催化剂相似,酶通过降低化学反应的活化能(用Ea或ΔG表示)来加快反应速率,大多数的酶可以将其催化的反应之速率提高上百万倍;事实上,酶是提供另一条活化能需求较低的途径,使更多反应粒子能拥有不少于活化能的动能,从而加快反应速率。酶作为催化剂,本身在反应过程中不被消耗,也不影响反应的化学平衡。酶有正催化作用也有负催化作用,不只是加快反应速率,也有减低反应速率。与其他非生物催化剂不同的是,酶具有高度的专一性,只催化特定的反应或产生特定的构型。
虽然酶大多是蛋白质,但少数具有生物催化功能的分子并非为蛋白质,有一些被称为核酶的RNA分子也具有催化功能。此外,通过人工合成所谓人工酶也具有与酶类似的催化活性,包括人工合成的DNA。有人认为酶应定义为具有催化功能的生物大分子,即生物催化剂。[1]
酶的催化活性会受其他分子影响:抑制剂是可以降低酶活性的分子;激活剂则是可以增加酶活性的分子。有许多药物和毒药就是酶的抑制剂。酶的活性还可以被温度、化学环境(如pH值)、底物浓度以及电磁波(如微波)等许多因素所影响。[2]
中文名
酶
英文名
enzyme;ferment
别称
酵素,生物催化剂
化学式
无确切化学式
含有元素
碳(C)、氢(H)、氧(O)、氮(N)
功能
催化
特点
专一高效多样温和
研究历史编辑
年,意大利科学家斯帕兰扎尼(L.Spallanzani,—)设计了一个巧妙的实验:将肉块放入小巧的金属笼中,然后让鹰吞下去。过一段时间他将小笼取出,发现肉块消失了。于是,他推断胃液中一定含有消化肉块的物质。但是什么,他不清楚。
年,法国的培安和培洛里将磨碎麦芽的液体作用于淀粉,结果发现淀粉被分解,于是将这个分解淀粉的物质命名为Diastase,也就是现在所谓的淀粉酶。后来,Diastase在法国成为用来表示所有酶的名称。
年,德国马普生物研究所科学家施旺(T.Schwann,—)从胃液中提取出了消化蛋白质的物质,解开消化之谜。
“酶”(enzyme)这个名称的使用,始于19世纪后半,是年由居尼所提出的。
年,美国科学家萨姆纳(J.B.Sumner,—)从刀豆种子中提取出脲酶的结晶,并通过化学实验证实脲酶是一种蛋白质。
20世纪30年代,科学家们相继提取出多种酶的蛋白质结晶,并指出酶是一类具有生物催化作用的蛋白质。
20世纪80年代,美国科学家切赫(T.R.Cech,—)和奥尔特曼(S.Altman,—)发现少数RNA也具有生物催化作用。
分布环境编辑
斯帕兰札尼研究鹰的消化作用(4张)
人体和哺乳动物体内含有种酶。它们或是溶解于细胞质中,或是与各种膜结构结合在一起,或是位于细胞内其他结构的特定位置上(是细胞的一种产物),只有在被需要时才被激活,这些酶统称胞内酶;另外,还有一些在细胞内合成后再分泌至细胞外的酶──胞外酶。酶催化化学反应的能力叫酶活力(或称酶活性)。酶活力可受多种因素的调节控制,从而使生物体能适应外界条件的变化,维持生命活动。没有酶的参与,新陈代谢几乎不能完成,生命活动就根本无法维持。[3]
一般来说,动物体内的酶最适温度在35到40℃之间,植物体内的酶最适温度在40-50℃之间;细菌和真菌体内的酶最适温度差别较大,有的酶最适温度可高达70℃。动物体内的酶最适PH大多在6.5-8.0之间,但也有例外,如胃蛋白酶的最适PH为1.8,植物体内的酶最适PH大多在4.5-6.5之间。
形态结构编辑
所有的酶都含有C、H、O、N四种元素。按照酶的化学组成可将酶分为单纯酶和复合酶两类。
单纯酶分子中只有氨基酸残基组成的肽链。
结合酶分子中则除了多肽链组成的蛋白质,还有非蛋白成分,如金属离子、铁卟啉或含B族维生素的小分子有机物。结合酶的蛋白质部分称为酶蛋白(apoenzyme),非蛋白质部分统称为辅助因子(cofactor),两者一起组成全酶(holoenzyme);只有全酶才有催化活性,如果两者分开则酶活力消失。非蛋白质部分如铁卟啉或含B族维生素的化合物若与酶蛋白以共价键相连的称为辅基(prostheticgroup),用透析或超滤等方法不能使它们与酶蛋白分开;反之两者以非共价键相连的称为辅酶(coenzyme),可用上述方法把两者分开。辅助因子有两大类,一类是金属离子,且常为辅基,起传递电子的作用;另一类是小分子有机化合物,主要起传递氢原子、电子或某些化学基团的作用。
结合酶中的金属离子有多方面功能,它们可能是酶活性中心的组成成分;有的可能在稳定酶分子的构象上起作用;有的可能作为桥梁使酶与底物相连接。辅酶与辅基在催化反应中作为氢(H+和e)或某些化学基团的载体,起传递氢或化学基团的作用。体内酶的种类很多,但酶的辅助因子种类并不多,常见到几种酶均用某种相同的金属离子作为辅助因子的例子,同样的情况亦见于辅酶与辅基,如3-磷酸甘油醛脱氢酶和乳酸脱氢酶均以NAD+作为辅酶。酶催化反应的特异性决定于酶蛋白部分,而辅酶与辅基的作用是参与具体的反应过程中氢(H+和e)及一些特殊化学基团的运载。
酶属生物大分子,分子质量至少在1万以上,大的可达百万。酶的催化作用有赖于酶分子的一级结构及空间结构的完整。若酶分子变性或亚基解聚均可导致酶活性丧失。一个值得注意的问题是酶所催化的反应物即底物(substrate),却大多为小分物质它们的分子质量比酶要小几个数量级。
酶的活性中心(activecenter)只是酶分子中的很小部分,酶蛋白的大部分氨基酸残基并不与底物接触。组成酶活性中心的氨基酸残基的侧链存在不同的功能基团,如-NH2。-COOH、-SH、-OH和咪唑基等,它们来自酶分子多肽链的不同部位。有的基团在与底物结合时起结合基团(bindinggroup)的作用,有的在催化反应中起催化基团(catalyticgroup)的作用。但有的基团既在结合中起作用,又在催化中起作用,所以常将活性部位的功能基团统称为必需基团(essentialgroup)。它们通过多肽链的盘曲折叠,组成一个在酶分子表面、具有三维空间结构的孔穴或裂隙,以容纳进入的底物与之结合并催化底物转变为产物,这个区域即称为酶的活性中心。
而酶活性中心以外的功能集团则在形成并维持酶的空间构象上也是必需的,故称为活性中心以外的必需基团。对需要辅助因子的酶来说,辅助因子也是活性中心的组成部分。酶催化反应的特异性实际上决定于酶活性中心的结合基团、催化基团及其空间结构。
命名方法编辑
通常有习惯命名和系统命名两种方法。
习惯命名常根据两个原则:1.酶的作用底物,如淀粉酶;2催化反应的类型,如脱氢酶。
也有根据上述两项原则综合命名或加上酶的其它特点,如琥珀酸脱氢酶、碱性磷酸酶等等。
习惯命名较简单,习用较久,但缺乏系统性又不甚合理,以致造成某些酶的名称混乱。如:肠激酶和肌激酶,从字面看,很似来源不同而作用相似的两种酶,实际上它们的作用方式截然不同。又比如:铜硫解酶和乙酰辅酶A转酰基酶实际上是同一种酶,但名称却完全不同。
鉴于上述情况和新发现的酶不断增加,为适应酶学发展的新情况,国际生化协会酶委员会推荐了一套系统的酶命名方案和分类方法,决定每一种酶应有系统名称和习惯名称。同时每一种酶有一个固定编号。
系统命名酶的系统命名是以酶所催化的整体反应为基础的。例如一种编号为“3.4.21.4”的胰蛋白酶,第一个数字“3”表示水解酶;第二个数字“4”表示它是蛋白酶水解肽键;第三个数字“21”表示它是丝氨酸蛋白酶,活性位上有一重要的丝氨酸残基;第四个数字“4”表示它是这一类型中被指认的第四个酶。规定,每种酶的名称应明确写出底物名称及其催化性质。若酶反应中有两种底物起反应,则这两种底物均需列出,当中用“:”分隔开。
例如:谷丙转氨酶(习惯名称)写成系统名时,应将它的两个底物“L-丙氨酸”“α-酮戊二酸”同时列出,它所催化的反应性质为转氨基,也需指明,故其名称为“L-丙氨酸:α-酮戊二酸转氨酶”。
由于系统命名一般都很长,使用时不方便,因此叙述时可采用习惯名。
酶类[4](酵素)类产品是糖和水果进行发酵之后的产物,也就是“水果泡菜”加上“低度甜味水果酒”的混合物。(比如一种青梅全发酵(非浸泡的)的低度果酒)[4]
分类方式编辑
按反应性质根据酶所催化的反应性质的不同,将酶分成六大类:
氧化还原酶类(oxidoreductase)促进底物进行氧化还原反应的酶类,是一类催化氧化还原反应的酶,可分为氧化酶和还原酶两类。
转移酶类(transferases)催化底物之间进行某些基团(如乙酰基、甲基、氨基、磷酸基等)的转移或交换的酶类。例如,甲基转移酶、氨基转移酶、乙酰转移酶、转硫酶、激酶和多聚酶等。
水解酶类(hydrolases)催化底物发生水解反应的酶类。例如,淀粉酶、蛋白酶、脂肪酶、磷酸酶、糖苷酶等。
裂合酶类(lyases)催化从底物(非水解)移去一个基团并留下双键的反应或其逆反应的酶类。例如,脱水酶、脱羧酶、碳酸酐酶、醛缩酶、柠檬酸合酶等。许多裂合酶催化逆反应,使两底物间形成新化学键并消除一个底物的双键。合酶便属于此类。
异构酶类(isomerases)催化各种同分异构体、几何异构体或光学异构体之间相互转化的酶类。例如,异构酶、表构酶、消旋酶等。
合成酶类(ligase)催化两分子底物合成为一分子化合物,同时偶联有ATP的磷酸键断裂释能的酶类。例如,谷氨酰胺合成酶、DNA连接酶、氨基酸:tRNA连接酶以及依赖生物素的羧化酶等。
按照国际生化协会公布的酶的统一分类原则,在上述六大类基础上,在每一大类酶中又根据底物中被作用的基团或键的特点,分为若干亚类;为了更精确地表明底物或反应物的性质,每一个亚类再分为几个组(亚亚类);每个组中直接包含若干个酶。
例如:乳酸脱氢酶(EC1.1.1.27)催化下列反应:
乳酸脱氢酶催化反应(2张)
按酶的化学组成单纯蛋白质
属于单纯蛋白质的酶类,除了蛋白质外,不含其他物质,如脲酶、蛋白酶、淀粉酶、脂肪酶和核糖核酸酶等
缀合蛋白质
属于缀合蛋白质的酶类,除了蛋白质外,还要结合一些对热稳定的非蛋白质小分子物质或金属离子,前者称为脱辅酶,后者称为辅因子,脱辅酶与辅因子结合后所形成的复合物称为全酶,即全酶=脱辅酶+辅因子。[5]
按存在形式前体酶原
有些酶如消化系统中的各种蛋白酶以无活性的前体形式合成和分泌,然后,输送到特定的部位,当体内需要时,经特异性蛋白水解酶的作用转变为有活性的酶而发挥作用。这些不具催化活性的酶的前体称为酶原(zymogen)。如胃蛋白酶原(pepsinogen)、胰蛋白酶原(trypsinogen)和胰凝乳蛋白酶原(chymotrypsinogen)等。某种物质作用于酶原使之转变成有活性的酶的过程称为酶原的激活(zymogenandactivationofzymogen)。使无活性的酶原转变为有活性的酶的物质称为活化素。活化素对于酶原的激活作用具有一定的特异性。
例如胰腺细胞合成的糜蛋白酶原为个氨基酸残基组成的单一肽链,分子内部有5对二硫键相连,该酶原的激活过程如图4-3所示。首先由胰蛋白酶水解15位精氨酸和16位异亮氨酸残基间的肽键,激活成有完全催化活性的p-糜蛋白酶,但此时酶分子尚未稳定,经p-糜蛋白酶自身催化,去除二分子二肽成为有催化活性井具稳定结构的α—糜蛋白酶。
在正常情况下,血浆中大多数凝血因子基本上是以无活性的酶原形式存在,只有当组织或血管内膜受损后,无活性的酶原才能转变为有活性的酶,从而触发一系列的级联式酶促反应,最终导致可溶性的纤维蛋白原转变为稳定的纤维蛋白多聚体,网罗血小板等形成血凝块。
酶原激活的本质是切断酶原分子中特异肽键或去除部分肽段后有利于酶活性中心的形成酶原激活有重要的生理意义,一方面它保证合成酶的细胞本身不受蛋白酶的消化破坏,另一方面使它们在特定的生理条件和规定的部位受到激活并发挥其生理作用。如组织或血管内膜受损后激活凝血因子;胃主细胞分泌的胃蛋白酶原和胰腺细胞分泌的糜蛋白酶原、胰蛋白酶原、弹性蛋白酶原等分别在胃和小肠激活成相应的活性酶,促进食物蛋白质的消化就是明显的例证。特定肽键的断裂所导致的酶原激活在生物体内广泛存在,是生物体的一种重要的调控酶活性的方式。如果酶原的激活过程发生异常,将导致一系列疾病的发生。出血性胰腺炎的发生就是由于蛋白酶原在未进小肠时就被激活,激活的蛋白酶水解自身的胰腺细胞,导致胰腺出血、肿胀。
同工酶
同工酶(isoenzyme)的概念:即同工酶是一类催化相同的化学反应,但酶蛋白的分子结构、理化性质和免疫原性各不相同的一类酶。它们存在于生物的同一种族或同一个体的不同组织,甚至在同一组织、同一细胞的不同细胞器中。至今已知的同工酶已不下几十种,如己糖激酶,乳酸脱氢酶等,其中以乳酸脱氢酶(Lacticaciddehydrogenase,LDH)研究得最为清楚。人和脊柱动物组织中,有五种分子形式,它们催化下列相同的化学反应:
五种同工酶均由四个亚基组成。LDH的亚基有骨骼肌型(M型)和心肌型(H型)之分,两型亚基的氨基酸组成不同,由两种亚基以不同比例组成的四聚体,存在五种LDH形式。即H4(LDHl)、H3M1(LDH2)、H2M2(LDH3)、H1M3(LDH4)和M4(LDH5)。
M、H亚基的氨基酸组成不同,这是由基因不同所决定。五种LDH中的M、H亚基比例各异,决定了它们理化性质的差别。通常用电冰法可把五种LDH分开,LDH1向正极泳动速度最快,而LDH5泳动最慢,其它几种介于两者之间,依次为LDH2。LDH3和LDH4。不同组织中各种LDH所含的量不同,心肌中以LDHl及LDH2的量较多,而骨骼肌及肝中LDH5和LDH4为主。不同组织中LDH同工酶谱的差异与组织利用乳酸的生理过程有关。LDH1和LDH2对乳酸的亲和力大,使乳酸脱氢氧化成丙酮酸,有利于心肌从乳酸氧化中取得能量。LDH5和LDH4对丙酮酸的亲和力大,有使丙酮酸还原为乳酸的作用,这与肌肉在无氧酵解中取得能量的生理过程相适应(详见糖代谢章)。在组织病变时这些同工酶释放入血,由于同工酶在组织器官中分布差异,因此血清同工酶谱就有了变化。故临床常用血清同工酶谱分析来诊断疾病。
别构酶
别构酶(allostericenzyme)往往是具有四级结构的多亚基的寡聚酶,酶分子中除有催化作用的活性中心也称催化位点(catalyticsite)外;还有别构位点(allostericsite)。后者是结合别构剂(allestericeffector)的位置,当它与别构剂结合时,酶的分子构象就会发生轻微变化,影响到催化位点对底物的亲和力和催化效率。若别构剂结合使酶与底物亲和力或催化效率增高的称为别构激活剂(allostericactivator),反之使酶底物的r亲和力或催化效率降低的称为别构抑制剂(allostericinhibitor)。酶活性受别构剂调节的作用称为别构调节(allostericregulation)作用。别构酶的催化位点与别构位点可共处一个亚基的不同部位,但更多的是分别处于不同亚基上。在后一种情况下具催化位点的亚基称催化亚基,而具别构位点的称调节亚基。多数别构酶处于代谢途径的开端,而别构酶的别构剂往往是一些生理性小分子及该酶作用的底物或该代谢途径的中间产物或终产物。故别构酶的催化活性受细胞内底物浓度、代谢中间物或终产物浓度的调节。终产物抑制该途径中的别构酶称反馈抑制(feedbackinhibition)。说明一旦细胞内终产物增多,它作为别构抑制剂抑制处于代谢途径起始的酶,及时调整该代谢途径的速度,以适应细胞生理机能的需要。别构酶在细胞物质代谢上的调节中发挥重要作用。故别构酶又称调节酶。(regulatoryenzyme)
修饰酶
体内有些酶需在其它酶作用下,对酶分子结构进行修饰后才具催化活性,这类酶称为修饰酶(modificationenzyme)。其中以共价修饰为多见,如酶蛋白的丝氨酸,苏氨酸残基的功能基团-OH可被磷酸化,这时伴有共价键的修饰变化生成,故称共价修饰(covalentmodification)。由于这种修饰导致酶活力改变称为酶的共价修饰调节(covalentmodificationregulation)。体内最常见的共价修饰是酶的磷酸化与去磷酸化,此外还有酶的乙酰化与去乙酰化、尿苷酸化与去尿苷酸化、甲基化与去甲基化。由于共价修饰反应迅速,具有级联式放大效应所以亦是体内调节物质代谢的重要方式。如催化糖原分解第一步反应的糖原磷酸化酶存在有活性和无活性两种形式,有活性的称为磷酸化酶a,无活性的称为磷酸化酶b,这两种形式的互变就是通过酶分子的磷酸化与去磷酸化的过程(详见糖代谢章)
多酶复合体与多酶体系
体内有些酶彼此聚合在一起,组成一个物理的结合体,此结合体称为多酶复合体(multienzyme头皮白癜风用什么药白斑医院有哪些
当前时间: