物理学中的确定性问题缘起于我正在教授的《与自然对话》[1]这门课。其中节选了詹姆士·华生(JamesWatson)在年写的一本畅销书《DNA:生命的秘密》。书中的第二章回顾了年他参与发现DNA双螺旋结构的过程[2],在第二章的最后,他说道:“生命不过是物理与化学的事,尽管是极其精巧的物理与化学。(Lifewasjustamatterofphysicsandchemistry,albeitexquisitelyorganizedphysicsandchemistry.)”
(图片来源:wikipedia)
这句话向来引人争议。就算是在老师们之间,也常常意见各异:有人支持,有人反对。讨论下来,其中一个落足点往往会归结到物理化学的确定性上面,也让我萌发了写这篇文章的念头。
自牛顿力学开始现代科学的滥觞,仅仅凭借着手中一枝笔、一张纸,转念间便可以洞察行星运行的奥秘,甚至预测其轨道及周期[3]。科学的发展让世界的图景宛如一张精密的机械设计图,在我们面前徐徐展开。此间,物理学往往以其精准确定的解释与预测收获了不少拥趸;然而,随着了解的深入,科学的刺针探入物理世界的复杂性里,让我们反省物理世界深藏的不确定性。
我们可以从两个层面来理解这种不确定性。
其中一部分源自现象的复杂。一个最简单的例子就是统计物理中的朗之万方程(LangevinEquation):
这个方程描述了布朗运动[4]的动态过程。布朗运动最早由爱因斯坦给出其统计意义[5],描述小颗粒在液体中受到液体分子随机碰撞而产生的运动。事实上,朗之万方程的物理意义非常简单,就是牛顿第二定律的直接运用:方程的左边是质量与加速度的乘积,其中v是小颗粒的速度,m是其质量;方程的右边也就是受力情况,其中,γ是粘滞系数,代表液体的性质,而η(t)就是代表液体粒子碰撞产生的随机力。之所以单独命名这个牛顿第二定律的方程,是因为在它的受力分析中出现了随机项η(t),正是它,体现了整个运动的不确定性。
那么,什么是随机项呢?它又为什么会出现在这里?
随机项的出现,暴露了真实世界的不确定性。让我们想象这个飘零在液体中的可怜小微粒,它被近乎无穷的液体分子包围着,忍受着来自它们的撞击。这些液体分子太多了,太小了,我们无法去跟踪每一粒分子的轨迹,只能用“随机行为”来描述这无法分辨与预测的冲击,这就是随机力产生的原因。简而言之,所谓随机,只是因为现象复杂到无法预测,所以不能给出确定的描述。正是因为这样,我们无法对小颗粒的运动行为精确预测,仅仅能给出一个统计上的概率分布。然而,这种随机还是易于处理的。毕竟,我们并不关心小颗粒受到的每一次撞击,只需要知道它在我们观测的宏观时空中的平均效应。观察成千上万的小颗粒的运动并非难事(例如:墨水的扩散现象),在我们娌荤枟鐧界櫆椋庢渶濂界殑鍖婚櫌鏄摢閲?涓鍖婚櫌鏇濆厜
当前时间: